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Abstract: Pneumonia, a severe and life-threatening result of bacterial or viral infection, can inflate air sacs in the lungs. The 

disease, which can target young and old people, is common in several countries. Generally, blood tests, pulse oximetry, sputum 

tests, CT scans, and chest X-rays are used to diagnose Pneumonia. Deep Learning (DL) models can be excessively helpful in 

analyzing the results of these tests. Over the past few years, several studies have suggested the implementation of different DL 

architectures for Pneumonia detection. However, these incorporate many trainable parameters for feature extraction from 

images, leading to a significantly high training time and resource consumption. Moreover, convolutions become monotonous 

after a certain number of layers, making it extremely difficult to improve the accuracy. In this research, we use Vision 

Transformers (ViT) for Pneumonia detection, an image classification architecture developed by modifying transformers in 

2021. To our knowledge, ViT has only been implemented in one study before this research for Pneumonia diagnosis. Our 

approach outperformed all existing research and state-of-the-art architectures in this domain regarding all performance metrics 

and training time and recorded a validation accuracy of 98.18%. We also compare our model’s performance with other tuned 

DL models (CNN) and analyze the performance gap.   
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1. Introduction 

 

Community-acquired Pneumonia [3] [4] is an infectious respiratory disease with several symptoms, the most common of which 

are chest pain, chills and fever. It may even cause death. People with a weak immune system, like Asthma patients, are at a 

greater risk of getting Pneumonia. Moreover, the severity has increased amidst the COVID-19 pandemic, infection from which 

can easily cause COVID-19 Pneumonia. Mycoplasma, Bacterial, Nosocomial, and Chlamydial are other types of Pneumonia. 

Deep Learning (DL) plays a crucial role in the medical field because it helps improve and speed up the process and assists. 

Quick diagnostic measures with DL are extremely useful in case of a serious yet common disease like Pneumonia. This has 

been an area of interest for researchers for many years, and several Pneumonia detection models using VCG, ResNet, Mask-

RCNN, and dozens of other architectures have been proposed. Detecting if a person is infected based on X-RAY scans (easily 

obtainable) is an image classification task that conventionally demands the use of a Convolutional Neural Network. However, 

these have a very high training time, with many trainable parameters for feature extraction from the input images. With 

increasing complexity and values for the hyperparameters, challenges like vanishing gradient can also be caused. The resource 
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consumption is also significantly increased in the process. Moreover, once the convolutions become monotonous (after a certain 

number of layers) and hit a plateau, improving the model's accuracy becomes extremely difficult. 

 

A highly efficient alternative for image recognition problems, Vision Transformers (ViT) [2], emerged in 2021. It was modified 

from Transformers [1] (tremendously in demand for Natural Language Processing), a new model introduced by Google in 

2017. ViT outperformed existing CNN architectures and state-of-the-art results, quickly gaining popularity. It is as much as 4 

times more computationally efficient than CNN and trains much faster while maintaining a high training and validation 

accuracy. Hence, we decided to use this extremely new and promising architecture for the important classification agenda.  

 

The rest of the paper begins with a literature survey of closely related studies to highlight the contributions of existing research 

in the domain (section 2). We then move to the proposed methodology in section 3, where we introduce ViT and clearly explain 

the steps involved in data acquisition, processing, and model development. The results obtained (section 4) are compared with 

existing research and state of state-of-the-art, and with a tuned custom CNN model, we build to demonstrate the performance 

and efficiency gap between the architectures. Finally, we move to the conclusion in section 5, followed by the references. 

 

2. Literature Survey 

 

Studies have used different CNN architectures for Pneumonia detection from X-ray images. ViT was used for the same in only 

1 prior research: Tyaggi et al. [5]. Here, chest X-ray images were used to obtain and compare the results from 3 different 

architectures: CNN, VGG16 and ViT. ViT achieved the highest validation accuracy but was only 86.38% (with a training 

accuracy of 96.45%). Hasan et al. [11] and Hammoudi et al. [17] focused on Covid-19 induced Pneumonia detection. The first 

study followed a classical CNN approach to train a tuned VGG16 architecture. An 80-20 train-test split on the dataset of chest 

X-rays yielded a validation accuracy of 91.69% through the proposed tuned model using the Adam optimizer. The latter trained 

several deep-learning architectures to detect and classify chest X-ray images as bacterial, viral or normal. While 

InceptionResNetV2 showed the least false positive rate, DenseNet169 achieved the highest overall classification accuracy of 

95.72%. 

 

To classify if a chest X-ray has a normal, Bacterial or Viral Pneumonia-infected lung, several CNN architectures were explored 

by Jain et al. [12]. SoftMax activation, pooling, flattening, dropout techniques and Adam optimizer were employed in training 

2 CNNs (2 and 3 layers, respectively), VGG16 and VGG19, Inception-v3, and ResNet50. They conclude that VGG19 

outperformed the other transfer learning models with the highest accuracy (88.46% for validation) and least overfitting. 

However, training and validation losses were still very high in this study. In a similar study, Asnaoui et al. [13] tuned as many 

as 9 CNN architectures using chest X-ray and CT datasets with 6000 images. These include baseline CNN, VGG16 and VGG19, 

Xception, Resnet50, etc. Resnet50 showed the best performance with an accuracy exceeding 96%. 

 

Hashmi et al. [14] adopted a unique weighted classifier-based supervised learning approach which combined the weighted 

predictions from 5 deep learning models, including Resnet18 and Xception. For a balanced improvement in the number of 

samples for training, data augmentation (partial) was applied. Guangzhou Women and Children’s Medical Center pneumonia 

dataset was used to test the hybrid model, which outperformed the individual-tuned models with a test accuracy of 98.43%. Wu 

et al. [15] also developed a hybrid model using ACNN (CNN with adaptive median filter recognition), based on a classical 

Machine Learning model, Random Forest (RF) Classifier. Using ACNN helped clean the data and achieve the required 

activation in each X-ray image. RF, tuned with GridSearchCV, was then applied. The proposed model detected Pneumonia 

from chest X-ray scans with an accuracy of 97%. 

 

Ibrahim et al. proposed the AlexNet model-based deep learning approach [18] to classify chest X-ray scans as normal or 

COVID19/non-COVID-19 (viral/bacterial) infected. For each of the types, segregated datasets were used. Scans were collected 

from various online sources, including GitHub and Kaggle. 70-30 train test split was used, and an overall classification accuracy 

of 95.54% was observed. However, using different datasets with highly varied sizes in this study introduces a bias in the model 

and makes it difficult to generalize the model. The model proposed in Jaiswal [19] is Mask-RCNN based. Local and global 

features are incorporated for pixel-wise segmentation and a processing step that merges bounding boxes from several models. 

Here, symptoms are detected from chest radiographs. The model’s output is negative or positive with predicted bounding boxes 

around lung opacities.  

 

Ayan and Unver [16] also use transfer learning to diagnose Pneumonia from chest X-rays. VGG16 and Xception have been 

used in their study, which acquired maximum accuracies of 87% and 82%, respectively. To maintain unbiasedness in the data, 

they also use standard augmentation techniques like rotation, shifting, zooming, etc. The final model had 144M trainable 

parameters with categorical cross entropy as the loss function and RMSprop as the optimizer. Zech et al. [20] believe CNNs 

perform poorly when generalizing new data. Their study revolves around performance measures of CNNs for generalizing new 

data collected from 3 hospitals for pneumonia screening. They used a total of 158,323 images for evaluation. The dataset was 
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fairly balanced. They concluded that the hospital-based system had an AUC score of 0.86, and CNNs trained on this pooled 

data had an AUC of 0.93. CNNs achieved better performance than hospital-based systems. Vats et al. [21] also use VGG16 and 

VGG19, along with InceptionV3 and MobileNet, to detect Pneumonia. They designed a new architecture, DenseNet, to 

overcome certain limitations of traditional transfer learning techniques [22]. They achieve a maximum validation accuracy of 

92.6% and compare results with existing state-of-the-art networks [23]. Table 1 presents a summary of the related works to 

their year of publication, models employed and best-achieved validation accuracy. The comparison also includes the current 

research study. 

 

Table 1: Summary of related works 

 

Paper Year of 

publication 

Models employed Highest validation 

accuracy (%) 

Most  

accurate model 

Tyaggi et al. [5] 2021 CNN, VGG16, ViT 86.38 ViT 

Hasan et al. [11] 2021 CNN, VGG16 91.69 VGG16 

Jain et al. [12] 2020 2- and 3- layer CNN, VGG16, 

VGG19, Inception-v3, ResNet50 

88.46 VGG19 

Asnaoui et al. [13] 2021 CNN, DenseNet201, Xception, 

Inception_ResNet_V2, VGG16, 

MobileNet_V2, VGG19, Resnet50, 

Inception_V3 

96 Resnet50 

Hashmi et al. [14] 2020 ResNet18, DenseNet121, Xception, 

MobileNetV3, InceptionV3 

98.43 Proposed hybrid 

weighted classifier 

Wu et al. [15] 2020 ACNN, RF 97 Proposed hybrid 

ACNN-RF 

Hammoudi et al.,  

[17] 

2021 ResNet50, DenseNet169, VGG19, 

Inception ResNetV2, RNN 

95.72%. DenseNet169 

Ibrahim et al. [18] 2020 AlexNet 95.54% AlexNet 

Jaiswal [19] 2019 Mask RCNN - Mask RCNN 

Ayan and Unver 

[16] 

2019 VGG16, Xception 87% VGG16 

Zech et al. [20] 2018 CNN - CNN 

Vats et al. [21] 2022 VGG16, VGG19, InceptionV3, 

MobileNet, DenseNet 

92.6% DenseNet 

Our work - ViT, CNN 98.18 ViT 

 

3. Proposed Methodology 

 

This section explains the entire methodology (Fig. 1) followed for this research, starting from data acquisition to data processing 

and, finally, model training and validation, in-depth. 

 

 
 

Figure 1: Proposed approach 
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3.1. Data Acquisition 

 

We used chest X-ray data from Guangzhou Women and Children’s Medical Center, Guangzhou, by Kermany et al. [6]. This 

data wasn’t explicitly collected for the sake of the experiment; rather, the imaging was done as part of a regular scan of the 

patient. To ensure the data had no unreadable or low-quality scans, all X-rays were passed through radiologists to clear them 

for the model [24]. Any non-suitable scan was discarded. 

 

The total number of clean scans in this dataset is 5863. This is split into 3 categories: train, test and validation. The dataset is 

divided as follows: 

 

• 5216 scans for training 

• 624 scans for testing  

• 16 unseen data for final validation  

 

Each category has 2 classes: “normal” for normal lung and “pneumonia” for Pneumonia suspected/diagnosed lung. To avoid 

any potential error in the dataset, the radiologists and the dataset authors maintained a constant consultation [25]. 

 

3.2. Data Processing  

 

Pneumonia is detected and diagnosed via certain clouding effects observed in the lung X-ray scans [26]. If a lung is infected, it 

appears opaque compared to a normal scan. Since the data has subtle features distributed across the entire scan, it leaves limited 

scope for segmentation or other image processing techniques. Hence, we use raw X-ray scan data to train our model, and no 

pre-processing steps are required [27].  

 

Nevertheless, input data has to be processed in some or the other way. There are also certain processing steps when it comes to 

Vision Transformers [28]. Like any other architecture, the input images must be resized into a fixed specific shape. We resize 

the input images to size 144x144 [29]. Moreover, the scans were 3-channel images converted to 1-channel images, as X-rays 

are essentially grayscale images [30]. This reduces the redundant channels and computational resources required along with it.  

 

The images were also augmented before the model training. This was embedded with the model itself, and a separate layer was 

created for data augmentation. For augmenting, we used 3 criteria: 

 

• Image flipping: A few images were randomly flipped along the vertical axis to generate a new image 

• Image rotation: A few images were randomly rotated along both directions, and the amount of rotation was fixed at 

0.015 

• Image zoom: few images were zoomed with the factor of 0.2 along both height and width 

• This augmenting pipeline was applied to every image in the training sample.  

 

3.3. Methodology 

 

Transformers were first introduced in attention is all you need [1] as state-of-the-art architecture for natural language processing 

[31]. The proposed new architecture was based on an attention mechanism instead of having an encoder-decoder configuration 

connected by an attention mechanism. Transformers can easily outperform other recurrent mechanisms on large and limited 

training data [32]. Vision Transformer (ViT) [2] uses a similar image recognition and classification mechanism. The essence 

of ViT is self-managed attention. To get into ViT, we must understand the basic units and working of a transformer and its 

attention mechanism [33].    

  

Transformers are also a sequence-to-sequence (seq2seq) [7] model based on an encoder-decoder mechanism without having 

recurrent units [8]. A transformer has an encoder map which maps the input symbol sequence, let’s say, (x1,x2, ..xn) to a 

continuous sequence (z1,z2, ..zn). The decoder uses this continuous sequence to generate the output sequence (y1,y2,..ym) [43]. 

The model also considers the previously generated symbols as extra input for the current symbol, which makes it capable of 

retaining context and hence makes the model auto-regressive. The internal architecture of a transformer encoder is shown in 

Fig. 2. 
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Figure 2: Internal architecture of a transformer encoder 

 

There are 2 major parts associated with the encoder block: 

 

• Self multi-head attention  

• A feed-forward neural network 

 

 

 
Figure 3: Self multi-head attention block 

 

In multi-head attention, instead of a single attention unit, the attention module has multiple attention units or heads working 

parallelly, which are later on merged (refer fig. 3). The attention module takes in Q (Query), K (Key) and V (Value) and splits 

it into N pieces. This N is the number of attention heads the model will use. Each of these splits is independently passed through 

a separate head, and the attention module runs computations on each head parallelly. These attention scores are then combined 

to get a final score, passed to further layers. 

 

The reason for this is that with multi-head attention, each input split can learn differently about every other split, which boosts 

the performance of the model by enabling the transformer to interpret the input sequence better. In the case of ViT, instead of 

input symbols or tokens, the image is split into various sections, and these splits are used for multi-head attention (explained 

later in this section). To summarize, having these splits essentially allows the transformer model to have different interpretations 
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of all other segments viewed via our particular attention head’s segment. Hence, better interpretation of the input image and 

better feature extraction.    

 

Self-attention has the same number of output vectors as input sequence vectors. For example, if the input sequence is (x1, x2, 

.. xm), the output context sequence will be (c1, c2, .. cm). The context vector ci will always be in the position of the input 

sequence vector xi, but it depends on all other xis. To simplify, with self-attention, each input sequence vector can interact with 

every other sequence vector via certain computations to decide which input vector should get the highest attention or weightage.  

 

In our case of ViT, each of the individual input sequences from the multi-head attention module can interact to decide which 

input image segment should get maximum attention and weightage. This can be compared to feature extraction done in CNN 

via convolutions. Instead of convoluting the entire image, we break the image into segments to determine which part of the 

image has some useful features significant enough for classification. Another thing to note here is that in the case of multi-head 

attention, one head’s context vector is not affected by any other attention head. Each head has its output context vector, which 

is concatenated later. 

 

An example of attention to images is shown in Fig. 4, as illustrated by the original authors of ViT.   

 

 
 

Figure 4: Output of attention block 

 

Although transformers were introduced for NLP problems, they also got into computer vision and image recognition. Recently 

introduced, Vision Transformer has outperformed most popular benchmarked CNN architectures, including ResNet (BiT) [9]. 

ViT also acquires accuracy just a few points below ResNet on small datasets without significant regularization. When trained 

on large datasets (>14M images), this situation drastically changes.  

 

The first step in training a ViT is to split the input image into smaller patches of fixed size. These individual patches are then 

linearly embedded. As commonly done in NLP, these patches can be considered as tokens for model input. These patches or 

tokens are fed into an encoder with self-managed attention. Finally, the context vector output is passed via a feed-forward 

network or a multi-layer perceptron for classification.  

 

In this research, the size of the processed image was kept at (144,144), and the patch size was kept at (6,6). This split renders a 

total of 576 segments per image. The rate for patch extraction was fixed at [1,1,1,1], with size and strides as [1,6,6,1]. Fig. 5 

describes how the raw image is broken into patches and passed through an encoder.  

  

Now, these patches are linearly embedded row by row to form a sequential input vector or token layer. This operation can be 

considered similar to the “flatten” operation usually done after the last convolution layer in the case of a CNN. The operation 

starts from the first row and continues sequentially till the last row. 
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Figure 5: Preparing the model input by splitting the X-ray image into smaller patches, followed by flattening 

 

In NLP, when the input string is split into smaller parts, which can be a collection of words or even characters, the process is 

called tokenization, and these individual splits are called tokens. In our case, the individual flattened patches are also considered 

tokens and are passed through an encoder. For the ViT model, we used 8 attention heads and 8 transformer layers. Before the 

transformer layer, the data augmentation and patch encoder layers were initialized (refer to the model structure in Fig. 6). 

 

 
 

Figure 6: Data augmentation and patch encoder layers 

 

This, as mentioned, was followed by 8 transformer layers. Each layer had a fixed predefined layout used in a recurring fashion. 

A normalization layer was added at the start of every transformer block. Layer normalization [10] essentially normalizes the 

input along the features, unlike batch normalization, which normalizes features across the batch dimensions. This layer is 

followed by a multi-headed self-attention layer with 8 heads. Each multi-head attention layer was also given a drop rate of 0.2 

to avoid any possible overfitting. Later, the patch encoder and attention layers were concatenated and followed by another 

normalization layer. Finally, a simple feed-forward network with 2 dense and 2 dropout layers was added. It consisted of 128 

and 64 nodes in the dense layers, respectively, with a dropout rate of 0.1. Fig. 7 summarizes the layout of each transformer 

layer or block. 

 

 
 

Figure 7: Layout of each transformer block 
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This particular layout was repeated until all defined transformer layers were covered. Finally, once all the transformer layers 

were done, one final layer normalization layer was added, followed by a flattened layer to be fed into another series of feed-

forward layers. The MLP layer has 2 dense layers with 2048 and 1024 nodes, followed by the classification layers at the end 

with 2 nodes. A dropout layer was also added after each dense layer with a dropout rate 0.2. Fig. 8 summarizes the above-

described layers and the total number of trainable features and parameters. 

 

 
 

Figure 8: Feed-forward layer 

 

Like any other deep learning architecture and millions of trainable parameters, there is always a risk of overfitting. We use 

model checkpointing, early stopping, and reducing learning rate on plateauing to prevent overfitting. The configuration for each 

of the following is described below: 

 

• Checkpointing  

• monitor='val_loss',  

• mode='min',  

• save_best_only=True 

• Early stopping  

• monitor='val_accuracy', 

• min_delta=1e-5, 

• patience=15 

• Reducing LR on plateauing 

• monitor='val_loss',  

• factor=0.2, 

• patience=10 

 

For the final hyperparameters, we used the Adam optimizer with a learning rate of 0.001 and weight decay of 0.0001. The loss 

function was sparse categorical cross-entropy, and logits were retained. For validation and evaluation, sparse categorical and 

top-5 accuracy were used. Finally, the model was trained on a batch size of 16 and a total epoch 50.  

 

For comparison, we also built a custom convolution network with similar hyperparameters. This CNN had a series of 

convolution layers with increasing features. A batch normalization and max pooling layer followed each layer. After all the 

feature extraction, the feature map was flattened, followed by a dense layer with 128 nodes and an output layer with 2 nodes. 

A sample convolution block is shown in Fig. 9. 
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Figure 9:  Sample convolution block in CNN 

 

4. Results and Analysis 

 

As expected, ViT outperformed the CNN model in terms of overall model performance. ViT yielded a maximum validation 

accuracy of 98.18% and a training accuracy of 94.65%. CNN yielded a maximum training accuracy of 98.75% but performed 

very poorly on validation data, with a validation accuracy of only 82.37%. The graphs in Fig. 10 visualize the trend of model 

accuracy with the number of epochs for ViT and the model loss with epochs. 

 

 
Figure 10: Performance evaluation of ViT 

 

We can see some underfitting for ViT. This is possible when the model has few parameters or isn’t complex enough to fit the 

training data correctly. This can be improved by having more attention heads or transformer blocks and further tuning it. 

Although the number of parameters for ViT already seems too much (22M), the computation and resources required to train a 

transformer are much less than a CNN. Hence, further increasing the parameters shouldn’t drastically affect the training time 

and computation resources required. Similar metrics for the CNN model are visualized in Figure 11. 

 

 
 

Figure 11: Performance evaluation of CNN 
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For the CNN model, we can see a large amount of overfitting. This happens because despite having one-third of the trainable 

parameters compared to the ViT model, the CNN model was too complex for the training data. Vision transformer performs 

better than the conventional CNN due to reliance on only attention instead of convolutions. The ability of the self-attention 

module to identify the segments of the input image which require the highest attention outperforms the traditional feature 

extraction via maintaining a features map using convolutions.   

 

5. Conclusion 

 

Pneumonia has several types and effects and is a common yet severe disease. Improvement in its detection mechanism will 

always be helpful. In this study, ViT has been efficiently implemented to detect Pneumonia from chest X-rays, scans of which 

were collected from various sources (like Kaggle and Github). The pipeline follows cleaning, processing, and splitting raw 

images into patches, which are then converted to linear embeddings for the encoder block. The linear and output layers 

proceeded with this block (consisting of the self-multi-head attention, addition, normalization, and feed-forward mechanism). 

Our approach outperformed all existing research and recorded a validation accuracy of 98.18% for Pneumonia detection. We 

also analyzed this model’s performance against tuned CNN. ViT can eventually completely replace vanilla CNN due to its 

extremely high efficiency and low resource and time consumption. The scope of this paper can be expanded to enhance the 

model’s performance further in terms of even better accuracy and less computation. For instance, specialized neural networks 

such as recurrent neural networks can be used in the sequential part instead of just vanilla-dense layers. 
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